Visualizing Random Forest with Self-Organising Map

نویسندگان

  • Piotr Plonski
  • Krzysztof Zaremba
چکیده

Abstract. Random Forest (RF) is a powerful ensemble method for classification and regression tasks. It consists of decision trees set. Although, a single tree is well interpretable for human, the ensemble of trees is a black-box model. The popular technique to look inside the RF model is to visualize a RF proximity matrix obtained on data samples with Multidimensional Scaling (MDS) method. Herein, we present a novel method based on Self-Organising Maps (SOM) for revealing intrinsic relationships in data that lay inside the RF used for classification tasks. We propose an algorithm to learn the SOM with the proximity matrix obtained from the RF. The visualization of RF proximity matrix with MDS and SOM is compared. What is more, the SOM learned with the RF proximity matrix has better classification accuracy in comparison to SOM learned with Euclidean distance. Presented approach enables better understanding of the RF and additionally improves accuracy of the SOM.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Predicting Periodic Phenomena with Self-Organising Maps

Self-Organising Maps are a form of neural network allowing unsupervised learning. In this work, we use a 2-dimensional network. Given a set of data, the neural network learns the distribution of data points, and provides a mapping from the set of data points to the neural network. The mapping has the property that similar data points map to nearby neurons in the network. Figure 2. Self-Organisi...

متن کامل

Performance Benchmarking of Non-banking Financial Institutions by Means of Self-organising Map Algorithm

We construct a benchmarking model in the form of a twodimensional self-organising map (SOM) to compare the performance of nonbanking financial institutions (NFIs) in Romania. The NFIs are characterized by a number of performance dimensions such as capital adequacy, assets’ quality and profitability. First, we apply Kohonen’ SOM algorithm (an unsupervised neural network algorithm) to group the N...

متن کامل

SOMMER: self-organising maps for education and research.

SOMMER is a publicly available, Java-based toolbox for training and visualizing two- and three-dimensional unsupervised self-organizing maps (SOMs). Various map topologies are implemented for planar rectangular, toroidal, cubic-surface and spherical projections. The software allows for visualization of the training process, which has been shown to be particularly valuable for teaching purposes.

متن کامل

Exploration of Loneliness Questionnaires Using the Self-Organising Map

Statistical machine learning methods can provide help when developing preventative services and tools that support the empowerment of individuals. We explore how the self-organizing map could be utilized as a tool for analyzing, visualizing and browsing heterogeneous survey data on wellbeing that contains both quantitative (numeric) and qualitative (text) data. There is systematic evidence impl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014